skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Vatandoust, Farzad"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Automated manufacturing feature recognition is a crucial link between computer-aided design and manufacturing, facilitating process selection and other downstream tasks in computer-aided process planning. While various methods such as graph-based, rule-based, and neural networks have been proposed for automatic feature recognition, they suffer from poor scalability or computational inefficiency. Recently, voxel-based convolutional neural networks have shown promise in solving these challenges but incur a tradeoff between computational cost and feature resolution. This paper investigates a computationally efficient sparse voxel-based convolutional neural network for manufacturing feature recognition, specifically, an octree-based sparse voxel convolutional neural network. This model is trained on a large-scale manufacturing feature dataset, and its performance is compared to a voxel-based feature recognition model (FeatureNet). The results indicate that the octree-based model yields higher feature recognition accuracy (99.5% on the test dataset) with 44% lower graphics processing unit (GPU) memory consumption than a voxel-based model of comparable resolution. In addition, increasing the resolution of the octree-based model enables recognition of finer manufacturing features. These results indicate that a sparse voxel-based convolutional neural network is a computationally efficient deep learning model for manufacturing feature recognition to enable process planning automation. Moreover, the sparse voxel-based neural network demonstrated comparable performance to a boundary representation-based feature recognition neural network, achieving similar accuracy in single-feature recognition without having access to the exact 3D shape descriptors. 
    more » « less
    Free, publicly-accessible full text available March 1, 2026